Bookbot

A flexible state-space model with lagged states and lagged dependent variables: simulation smoothing

En savoir plus sur le livre

We provide a simulation smoother to a exible state-space model with lagged states and lagged dependent variables. Qian (2014) has introduced this state-space model and proposes a fast Kalman filter with time-varying state dimension in the presence of missing observations in the data. In this paper, we derive the corresponding Kalman smoother moments and propose an efficient simulation smoother, which relies on mean corrections for unconditional vectors. When applied to a factor model, the proposed simulation smoother for the states is efficient compared to other state-space models without lagged states and/or lagged dependent variables in terms of computing time."

Achat du livre

A flexible state-space model with lagged states and lagged dependent variables: simulation smoothing, Philipp Hauber

Langue
Année de publication
2019
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

Personne n'a encore évalué .Évaluer