Plus d’un million de livres, à portée de main !
Bookbot

Introduction to optimal estimation

Évaluation du livre

4,0(1)Évaluer

Paramètres

  • 380pages
  • 14 heures de lecture

En savoir plus sur le livre

This book provides an introductory, yet comprehensive, treatment of both Wiener and Kalman filtering, along with a development of least-squares estimation, maximum likelihood estimation, and maximum a posteriori estimation based on discrete-time measurements. A good deal of emphasis is placed in the text on showing how these different approaches to estimation fit together to form a systematic development of optimal estimation. Included in the text is a chapter on nonlinear filtering, focusing on the extended Kalman filter (EKF) and a new measurement update that uses the Levenburg-Marquardt algorithm to obtain more accurate results in comparison to the EKF measurement update. Applications of nonlinear filtering are also considered, including the identification of nonlinear systems modeled by neural networks, FM demodulation, target tracking based on polar-coordinate measurements, and multiple target tracking.

Achat du livre

Introduction to optimal estimation, Edward W. Kamen

Langue
Année de publication
1999
product-detail.submit-box.info.binding
(souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

4,0
Très bien
1 Évaluations

Il manque plus que ton avis ici.