Bookbot

Towards Optimally Diverse Randomized Ensembles of Neural Networks

Paramètres

Pages
136pages
Temps de lecture
5heures

En savoir plus sur le livre

Focusing on ensemble learning, this work highlights the effectiveness of combining diverse neural network classifiers to achieve improved accuracy over single models. It examines how randomizing neural network parameters can create diverse ensembles, enhancing generalization. By employing a sampling strategy akin to Random Forests, the study aims to foster disagreement among network members. Experimental findings reveal that while inducing diversity in ensembles can be beneficial, it does not always guarantee accuracy improvements, making this research valuable for enthusiasts of ensemble methods and neural networks.

Achat du livre

Towards Optimally Diverse Randomized Ensembles of Neural Networks, Anna Martin

Langue
Année de publication
2017
product-detail.submit-box.info.binding
(souple)
Nous vous informerons par e-mail dès que nous l’aurons retrouvé.

Modes de paiement

Personne n'a encore évalué .Évaluer